Abstract

The specimens of aluminum alloy welded joint were prepared by gas tungsten arc welding using 2A12 sheets and ER5356 welding wires. Some specimens were full coverage strengthened by ultrasonic impact treatment and the others were not strengthened. The surface layer microstructures of the ultrasonic impact treated and untreated specimens were investigated by optical microscopy and transmission electron microscopy. The surface layer hardness and residual stress distributions along the thickness direction were measured by micro-hardness tester and X-ray diffraction method. The results showed that a grain refinement layer which depth extended up to about 150∼200 μm was produced by ultrasonic impact treatment. The average hardness value of the treated specimens was up to 110 HV, increasing by 45% compared with 76 HV of the untreated specimen. A residual compressive stress layer was also produced by ultrasonic impact treatment, and the depth was close to 900 μm. The maximum residual compressive stress was -285 MPa. At the same time, the anti-fatigue mechanisms on grain refinement, work hardening and residual compressive stress of aluminum alloy welded joint with ultrasonic impact treatment were also discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call