Abstract

To analyze the strengthening mechanism of 30CrMnSiNi2A steel welded joint with ultrasonic impact treatment (UIT), the welded joint specimens were full coverage strengthened by the technology. The microstructure of the surface layer in fusion zone of the welded joint with and without UIT was investigated by optical microscopy (OM). The hardness and residual stress distributions along the thickness direction were also measured by micro-hardness tester and X-ray diffraction method respectively. The results show that the microstructure in fusion zone of the untreated 30CrMnSiNi2A steel welded joint were coarse dendrite, and there were many welding defects in this zone. UIT has the ability to achieve more compact microstructure with only small welding defects. The average hardness value of the treated specimens reached 571 HV, increased 14.4% as compared with that of the untreated specimen (499 HV). A residual compressive stress layer with thickness of 850 μm was also obtained from by UIT, and the maximum residual compressive stress was-347 MPa. The grain refinement, work hardening and residual compressive stress in fusion zone introduced by UIT increased its anti-fatigue performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.