Abstract

BackgroundSodium lactate (SL) has been described as an efficient therapy in treating raised intracranial pressure (ICP). However, the precise mechanism by which SL reduces intracranial hypertension is not well defined. An antiedematous effect has been proposed but never demonstrated. In this context, the involvement of chloride channels, aquaporins, or K–Cl cotransporters has also been suggested, but these mechanisms have never been assessed when using SL.MethodsIn a rat model of traumatic brain injury (TBI), we compared the effect of SL versus mannitol 20% on ICP, cerebral tissue oxygen pressure, and brain water content. We attempted to clarify the involvement of chloride channels in the antiedematous effects associated with lactate therapy in TBI.ResultsAn equimolar single bolus of SL and mannitol significantly reduced brain water content and ICP and improved cerebral tissue oxygen pressure 4 h after severe TBI. The effect of SL on brain water content was much longer than that of mannitol and persisted at 24 h post TBI. Western blot and immunofluorescence staining analyses performed 24 h after TBI revealed that SL infusion is associated with an upregulation of aquaporin 4 and K–Cl cotransporter 2.ConclusionsSL is an effective therapy for treating brain edema after TBI. This study suggests, for the first time, the potential role of chloride channels in the antiedematous effect induced by exogenous SL.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.