Abstract
Multiple Sclerosis (MS) is a debilitating disease that severely affects the central nervous system (CNS). Apart from neurological symptoms, it is also characterized by neuropsychiatric comorbidities, such as anxiety and depression. Phosphodiesterase-5 inhibitors (PDE5Is) such as Sildenafil and Tadalafil have been shown to possess antidepressant-like effects, but the mechanisms underpinning such effects are not fully characterized. To address this question, we used the EAE model of MS, behavioral tests, immunofluorescence, immunohistochemistry, western blot, and 16S rRNA sequencing. Here, we showed that depressive-like behavior in Experimental Autoimmune Encephalomyelitis (EAE) mice is due to neuroinflammation, reduced synaptic plasticity, dysfunction in glutamatergic neurotransmission, glucocorticoid receptor (GR) resistance, increased blood-brain barrier (BBB) permeability, and immune cell infiltration to the CNS, as well as inflammation, increased intestinal permeability, and immune cell infiltration in the distal colon. Furthermore, 16S rRNA sequencing revealed that behavioral dysfunction in EAE mice is associated with changes in the gut microbiota, such as an increased abundance of Firmicutes and Saccharibacteria and a reduction in Proteobacteria, Parabacteroides, and Desulfovibrio. Moreover, we detected an increased abundance of Erysipelotrichaceae and Desulfovibrionaceae and a reduced abundance of Lactobacillus johnsonii. Surprisingly, we showed that Tadalafil likely exerts antidepressant-like effects by targeting all aforementioned disease aspects. In conclusion, our work demonstrated that anxiety- and depressive-like behavior in EAE is associated with a plethora of neuroimmune and gut microbiota-mediated mechanisms and that Tadalafil exerts antidepressant-like effects probably by targeting these mechanisms. Harnessing the knowledge of these mechanisms of action of Tadalafil is important to pave the way for future clinical trials with depressed patients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.