Abstract

Sulfite salts are widely used as antibrowning agents in food processing. Nevertheless, the exact mechanism by which sulfite prevents enzymatic browning has remained unknown. Here, we show that sodium hydrogen sulfite (NaHSO3) irreversibly blocks the active site of tyrosinase from the edible mushroom Agaricus bisporus, and that the competitive inhibitors tropolone and kojic acid protect the enzyme from NaHSO3 inactivation. LC-MS analysis of pepsin digests of NaHSO3 -treated tyrosinase revealed two peptides showing a neutral loss corresponding to the mass of SO3 upon MS(2) fragmentation. These peptides were found to be homologous peptides containing two of the three histidine residues that form the copper-B-binding site of mushroom tyrosinase isoform PPO3 and mushroom tyrosinase isoform PPO4, which were both present in the tyrosinase preparation used. Peptides showing this neutral loss behavior were not found in the untreated control. Comparison of the effects of NaHSO3 on apo-tyrosinase and holo-tyrosinase indicated that inactivation is facilitated by the active site copper ions. These data provide compelling evidence that inactivation of mushroom tyrosinase by NaHSO3 occurs through covalent modification of a single amino-acid residue, probably via addition of HSO3(-) to one of the copper-coordinating histidines in the copper-B site of the enzyme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.