Abstract

Scientific studies about the antibacterial effects of honeydew honey produced by the stingless bee are very limited. In this study, the antibacterial activities of 46 blossom and honeydew honeys produced by both honey bees and stingless bees were evaluated and compared. All bacterial isolates showed varying degrees of susceptibility to blossom and honeydew honeys produced by the honey bee (Apis cerana) and stingless bee (Heterotrigona itama and Geniotrigona thoracica) in agar-well diffusion. All stingless bee honeys managed to inhibit all the isolates but only four out of 23 honey bee honeys achieved that. In comparison with Staphylococcus aureus, Escherichia coli was found to be more susceptible to the antibacterial effects of honey. Bactericidal effects of stingless bee honeys on E. coli were determined with the measurement of endotoxins released due to cell lysis. Based on the outcomes, the greatest antibacterial effects were observed in honeydew honey produced by H. itama. Scanning electron microscopic images revealed the morphological alteration and destruction of E. coli due to the action of this honey. The combination of this honey with antibiotics showed synergistic inhibitory effects on E. coli clinical isolates. This study revealed that honeydew honey produced by H. itama stingless bee has promising antibacterial activity against pathogenic bacteria, including antibiotic resistant strains.

Highlights

  • The antibacterial activity of honey has been known since the 19th century [1]

  • This study revealed that honeydew honey produced by H. itama stingless bee has promising antibacterial activity against pathogenic bacteria, including antibiotic resistant strains

  • According to the results shown, 21 honey bee honey samples were able to inhibit E. coli but only six honey bee honey samples managed to inhibit S. aureus

Read more

Summary

Introduction

The potent inhibitory activity of stingless bee honey has further increased the interest in the application of honey to eradicate antibiotic-resistant bacteria. Studies have shown that stingless bee honeys displayed greater and broader spectrum inhibitory activities than honey produced by Apis honey bees, against. Among at least 32 stingless bee species that have been identified in Malaysia, the most abundant species found in meliponiculture are Heterotrigona itama and Geniotrigona thoracica because they produce higher volume of honey as compared to the other stingless bee species [5,6]. Similar to the honey bees, the stingless bees collect nectar for honey production, but they store the nectar in honey pots instead of hexagonal honeycomb. The honey pots are made of cerumen, which is a mixture that is similar to propolis but with the addition of the mandibular secretion of the stingless bee Antibiotics 2020, 9, 871; doi:10.3390/antibiotics9120871 www.mdpi.com/journal/antibiotics

Objectives
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call