Abstract

The objective of this study was to evaluate the antibacterial efficacy against Enterococcus faecalis and Streptococcus mutans and in vivo toxicity using embryonic zebrafish assays of sodium hypochlorite (NaOCl) and electrolyzed oxidizing (EO) water (containing hypochlorous acid (HOCl))-based root canal irrigating solutions. Methodology: Using 100 μL microbial count of 1 × 108 cfu/mL Enterococcus faecalis to mix with each 10 mL specimen of NaOCl or HOCl for designed time periods. The above protocol was also repeated for Streptococcus mutans. The concentration of viable microorganisms was estimated based on each standardized inoculum using a plate-count method. Zebrafish embryo assays were used to evaluate acute toxicity. Results: All the HOCl or NaOCl treatment groups showed > 99.9% antibacterial efficacy against Enterococcus faecalis and Streptococcus mutans. Zebrafish embryos showed almost complete dissolution in 1.5% NaOCl within 5 min. Both survival rates after being treated with 0.0125% and 0.0250% HOCl for 0.5 min or 1.0 min were similar to that of E3 medium. Conclusions: Both NaOCl and HOCl revealed similar antibacterial efficacy (> 99.9%) against Enterococcus faecalis and Streptococcus mutans. While 1.5% NaOCl fully dissolved the Zebrafish embryos, both 0.0125% and 0.0250% HOCl showed little in vivo toxicity, affirming its potential as an alternative irrigation solution for vital pulp therapy.

Highlights

  • The removal of the pathologic pulp, cleaning, and shaping of the root canal system are essential for successful endodontic treatment to disinfect pulpal space or prevent its reinfection of reference [1].The complex root anatomy is one of the major challenges to intracanal cleaning and disinfection; mechanical instrumentation combined with chemical irrigation is the widely accepted strategy to enhance successful debridement [2]

  • To evaluate acute toxicity and developmental defects caused by NaOCl and electrolyzed oxidizing (EO) water, zebrafish embryos were exposed to sodium hypochlorite (NaOCl) (1.5%) for 5 min as well as EO waters (0.0125% and 0.0250%) for

  • The bacterial counts and reduction of E. faecalis and S. mutans before and after treatment are summarized in Table 1

Read more

Summary

Introduction

The removal of the pathologic pulp, cleaning, and shaping of the root canal system are essential for successful endodontic treatment to disinfect pulpal space or prevent its reinfection of reference [1].The complex root anatomy is one of the major challenges to intracanal cleaning and disinfection; mechanical instrumentation combined with chemical irrigation is the widely accepted strategy to enhance successful debridement [2]. It has been documented that severe adverse reactions such as sequelae of pain, swelling, ecchymosis, and paresthesia can occur as a result of chemical burn associated with NaOCl periradicular extravasation during endodontic treatment [6]. For this reason, AAE (American Association of Endodontists) recommends use of low concentrations of NaOCl (1.5% for 5 min) followed by irrigation with saline or ethylenediaminetetraacetic acid (EDTA) to minimize cytotoxicity to stem cells in regenerative procedure [7]. All of the above side effects with the use of NaOCl have prompted our search for an alternative endodontic irrigant that has superior antimicrobial capability along with little tissue toxicity

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.