Abstract

Although the polyether ether ketone (PEEK) has excellent comprehensive properties, its non-antibacterial and low wear-resistant limit the wide application in the field of artificial joint materials. In this paper, Nano-ZnO was generated in situ on the surface of PEEK powder by one-step hydrothermal method, which improved the binding force of Nano-ZnO and PEEK matrix. Then the PEEK-based nanocomposites were prepared by melt blending with the synthesized Nano-ZnO-PEEK powders and PEEK powders. The microstructure, mechanical, biological and tribological properties of PEEK-based nanocomposites were studied. The results showed that the compressive strength of PEEK-based nanocomposites can reach up to 319.2 ± 2.4 MPa. Both PEEK and PEEK-based nanocomposites were non-toxic to cells. Meanwhile, PEEK-based nanocomposites showed good antibacterial activity against E.coli and Staphylococcus aureus, and the antibacterial activity was better with the increase of Nano-ZnO content. In addition, when the Nano-ZnO content was 5%, the wear rate of PEEK-based nanocomposites was about 68% lower than that of pure PEEK materials. Thus, PEEK-based nanocomposites has a dual function of good antibacterial property and excellent wear resistance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.