Abstract
BackgroundCelastrol is a natural triterpene exhibiting significant and extensive antitumor activity in a wide range of cancer. Due to unfavorable toxicity profile and undefined mechanism, Celastrol's application in clinical cancer therapy remains limited. Herein, we elucidate the pharmacological mechanism of Celastrol's anticancer effects, with a focus on STAT3 signaling pathway in cancers with high incidence of metastasis. MethodsThe safety profile of Celastrol were assessed in mice. In vitro analysis was performed in gastric cancer and ovarian cancer to assess the cytotoxicity, induction of reactive oxygen species (ROS) of Celastrol using STAT3 knockout cancer cells. Effects of Celastrol on STAT3 activation and transcription activity, JAK2/STAT3 signaling protein expression were assessed. Additionally, proteomic contrastive analysis was performed to explore the molecular association of Celastrol with STAT3 deletion in cancer cells. ResultsCelastrol has no obvious toxic effect at 1.5 mg/kg/day in a 15 days' administration. Celastrol inhibits tumor growth and increases ROS in a STAT3 dependent manner in gastric and ovarian cancer celllines. On molecular level, it downregulates IL-6 level and inhibits the JAK2/STAT3 signaling pathway by suppressing STAT3’ activation and transcription activity. Proteomic contrastive analysis suggests a similar cellular mechanism of action between Celastrol and STAT3 deletion on regulating cancer progression pathways related to migration and invasion. ConclusionOur research elucidates the anti-cancer mechanism of Celastrol through targeting the JAK2/STAT3 signaling pathway in cancer with high incidence of metastasis. This study provides a solid theoretical basis for the application of Celastrol in cancer therapy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.