Abstract

Flavonol kaempferol possesses a broad spectrum of potent pharmacological activities that seem to be effective in the modulation of allergic respiratory diseases. In our study, an experimental animal model of ovalbumin (OVA)-induced allergic airway inflammation in guinea pigs was used to determine the anti-asthmatic potential of kaempferol. The parameters of specific airway resistance (sRaw) and cough reflex response were evaluated in vivo. In vitro, an assessment of tracheal smooth muscle (TSM) contractility and analyses of inflammatory cytokines (IL-4, IL-5, IL-13, GM-CSF, IFN-γ), transforming growth factor (TGF-β1), immune cells count and ciliary beating frequency (CBF) were performed. Both single (6, 20 mg/kg b. w. p. o.) and long-term administered doses of kaempferol (20 mg/kg b. w. p. o., 21 days) suppressed sRaw provoked by histamine in conscious animals. The administration of kaempferol for 21 days attenuated histamine-induced TSM contractility in vitro and ameliorated the progression of chronic airway inflammation by decreasing the levels of IL-5, IL-13, GM-CSF, eosinophil count in bronchoalveolar lavage (BAL) fluid and TGF-β1 protein level in lung tissue. Kaempferol also eliminated the alterations in cough reflex sensitivity invoked by OVA-sensitization, but it did not affect CBF. The results demonstrate that flavonol kaempferol can modulate allergic airway inflammation and associated asthma features (AHR, aberrant stimulation of cough reflex).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call