Abstract

We numerically solve the nonlinear two-fluid Hall–Vinen–Bekharevich–Khalatnikov (HVBK) equations for superfluid helium confined inside a short Couette annulus. The outer cylinder and the ends of the annulus are held fixed whilst the inner cylinder is rotated. This simple flow configuration allows us to study how the vortex lines respond to a shear in the presence of boundaries. It also allows us to investigate further the boundary conditions associated with the HVBK model. The main result of our investigation is the anomalous motion of helium II when compared to a classical fluid. The superfluid Ekman cells always rotate in the opposite sense to a classical Navier–Stokes fluid due to the mutual friction between the two fluids, whilst the sense of rotation of the normal fluid Ekman cells depends on the parameter range considered. We also find that the tension of the vortex lines forces the superfluid to rotate about the inner cylinder almost like a rigid column.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call