Abstract

Aortic insufficiency (AI) is a crucial complication during continuous-flow left ventricular assist device (LVAD) support. Our previous clinical study suggested that a larger angle between the outflow graft and the aorta (O-A angle) could cause AI progression. This study examined the effect of the O-A angle on the hemodynamics of AI under LVAD support in an acute animal experimental model. An LVAD was installed in seven calves, with the inflow cannula inserted from the LV apex and with the outflow graft sutured at the ascending aorta. The AI model was made using a temporary inferior vena cava filter inserted from the LV apex and placed at the aortic valve. Cardiac dysfunction was induced by continuous beta-blocker infusion. Hemodynamic values and the myocardial oxygen extraction rate (O2ER) were evaluated at three O-A angles (45°, 90°, and 135°) over three levels of AI (none, Sellers I-II AI, and Sellers III-IV AI). The recirculation rate, defined as the percentage of regurgitation flow to LVAD output, was calculated. Systemic flow tended to decrease with a larger O-A angle. The recirculation rate was significantly increased with a larger O-A angle (22, 23, and 31% at 45°, 90°, and 135° in Sellers III-IV AI, respectively). Coronary artery flow was decreased at a larger O-A angle (86, 76 and 75mL/min at 45°, 90°, and 135° in Sellers I-II AI, respectively, and 77, 67, and 56mL/min at 45°, 90°, and 135° in Sellers III-IV AI, respectively). O2ER tended to increase with a larger O-A angle (40, 43, and 49% at 45°, 90°, and 135° in Sellers III-IV AI, respectively). A larger O-A angle can increase the recirculation due to AI and can be disadvantageous to LVAD-AI hemodynamics and myocardial oxygen metabolism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.