Abstract

There has been a large amount of experience in recent decades in the use of magnetic fields on reservoir fluids. This paper discusses the effect of a magnetic field on wax precipitation. An analytical model is developed to quantify the wax deposition rate on the tubing surface during the magnetic treatment of reservoir oil. It has been established that the passage of the oil flow through a non-uniform magnetic field causes a high-intensity electric field for a sufficiently long period of time, the effect of which decreases the solubility of wax in oil, increases the intensity of wax precipitation in oil, and reduces the wax deposition on the tubing surface. The model accounts for the fact that the wax deposits present on the tubing surface are a highly efficient heat insulator that changes the temperature regime of the flow and the temperature of the tubing wall. This circumstance changes the rate of deposits but does not make these deposits less harmful to wells’ operation. A method for calculating the equilibrium wax concentration and changing the solubility of wax in oil under a constant electric field has been developed. We show that the effect of magnetic treatments on wax deposition rises with the increase in the concentration of asphaltenes in the oil and water cut.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.