Abstract

The theory of finite security markets developed by Harrison and Pliska [1] used the separating hyperplane theorem to establish the relationship between the lack of arbitrage opportunities and the existence of a certain martingale measure. In this paper we treat this theory by examining certain geometric properties of the sample paths of the price process, that is, we focus on the price increments of the stocks between one time period to the next and convert them to martingale differences through an equivalent change of measure. Thus, in contrast to Harrison and Pliska&s functional analytic derivation, our approach is based on probabilistic methods and allows a geometric interpretation which not only provides a connection to linear programming but also yields an algorithm for analyzing finite security markets. Moreover, we can make precise the connection between diverse expressions of economic equilibrium such as ‘absence of arbitrage’, ‘martingale property, and ‘complementary slackness property’.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.