Abstract

The main aim of the paper was to prove that the complete Black-Scholes-Merton regime-switching Levy market is characterized by an absence of arbitrage. In the considered model, the prices of financial assets are described by the Levy process in which the coefficients depend on the states of the Markov chain. Such a market is incomplete; in order to complete this market, jump financial instruments and power-jump assets were added. Then, an equivalent martingale measure was indicated and the conditions were determined so that the above model is characterized by the absence of arbitrage. Arbitrage is a trade that profits by exploiting the price differences of identical or similar financial instruments in different markets or in different forms. Thus arbitrage can be understood as risk-free profit for the trader.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.