Abstract

Time scale analysis is a well-established method in combustion science to identify slow and fast processes, but is also required for multi-scale modeling of turbulence–chemistry interaction. Models such as flamelet are based on scale separation arguments, which require a suitable definition of chemical time scales. In this article we study different time scale definitions. Two definitions previously published in the literature as well as two new definitions are investigated in detail. Most time scales require the computation of the eigenvalues of the chemical Jacobian, which is computationally expensive especially for larger chemical reaction mechanisms. One of the new definitions also requires the Jacobian of the chemical source term, whereas the computation of the second newly proposed time scale is computationally straight-forward since neither one is needed. We evaluate the four methods on a simple one-step reacting system and a partial oxidation flame which combines an oxy-fuel type reaction and a fuel-rich reforming post flame zone. Most of the considered time scale definitions provide similar results whereas the computational effort differs significantly.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.