Abstract

We introduce a new class of integrators for stiff ODEs as well as SDEs. Examples of subclasses of systems that we treat are ODEs and SDEs that are sums of two terms, one of which has large coefficients. These integrators are as follows: (i) Multiscale: They are based on flow averaging and thus do not fully resolve the fast variables and have a computational cost determined by slow variables. (ii) Versatile: The method is based on averaging the flows of the given dynamical system (which may have hidden slow and fast processes) instead of averaging the instantaneous drift of assumed separated slow and fast processes. This bypasses the need for identifying explicitly (or numerically) the slow or fast variables. (iii) Nonintrusive: A pre-existing numerical scheme resolving the microscopic time scale can be used as a black box and easily turned into one of the integrators in this paper by turning the large coefficients on over a microscopic time scale and off during a mesoscopic time scale. (iv) Convergent over two scales: They converge strongly over slow processes and in the sense of measures over fast ones. We introduce the related notion of two-scale flow convergence and analyze the convergence of these integrators under the induced topology. (v) Structure preserving: They inherit the structure preserving properties of the legacy integrators from which they are derived. Therefore, for stiff Hamiltonian systems (possibly on manifolds), they can be made to be symplectic, time-reversible, and symmetry preserving (symmetries are group actions that leave the system invariant) in all variables. They are explicit and applicable to arbitrary stiff potentials (that need not be quadratic). Their application to the Fermi–Pasta–Ulam problems shows accuracy and stability over four orders of magnitude of time scales. For stiff Langevin equations, they are symmetry preserving, time-reversible, Boltzmann–Gibbs-reversible, quasi-symplectic on all variables, and conformally symplectic with isotropic friction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.