Abstract

BackgroundElectrical acupuncture (EA) has been utilized in acute pain management. However, the neuronal mechanisms that lead to the analgesic effect are still not well defined. The current study assessed the intensity [optimal EA (OI-EA) vs. minimal EA (MI-EA)] effect of non-noxious EA on supraspinal regions related to noxious heat pain (HP) stimulation utilizing an EA treatment protocol for acute pain and functional magnetic resonance imaging (fMRI) with correlation in behavioral changes. Subjects underwent five fMRI scanning paradigms: one with heat pain (HP), two with OI-EA and MI-EA, and two with OI-EA and HP, and MI-EA and HP.ResultsWhile HP resulted in activations (excitatory effect) in supraspinal areas known for pain processing and perception, EA paradigms primarily resulted in deactivations (suppressive effect) in most of these corresponding areas. In addition, OI-EA resulted in a more robust supraspinal sedative effect in comparison to MI-EA. As a result, OI-EA is more effective than MI-EA in suppressing the excitatory effect of HP in supraspinal areas related to both pain processing and perception.ConclusionIntensities of EA plays an important role in modulating central pain perception.

Highlights

  • Electrical acupuncture (EA) has been utilized in acute pain management

  • No statistically significant difference was observed between heat pain (HP) only and HP after minimal EA (MI-EA) VAS scores

  • It is known that collateral pain ascending pathways exist and individual afferent neurons often project in more than one of these pathways [16,17,18]. These pathways include a spinohypothalamic pathway, a spinopontoamygdaloid pathway, and a component of the spinothalamic pathway that projects to specific midline thalamic nuclei which further projects to limbic cortical areas such as the anterior cingulate cortex (ACC) and insular cortex (IC)

Read more

Summary

Introduction

Electrical acupuncture (EA) has been utilized in acute pain management. the neuronal mechanisms that lead to the analgesic effect are still not well defined. The current study assessed the intensity [optimal EA (OI-EA) vs minimal EA (MI-EA)] effect of non-noxious EA on supraspinal regions related to noxious heat pain (HP) stimulation utilizing an EA treatment protocol for acute pain and functional magnetic resonance imaging (fMRI) with correlation in behavioral changes. We conducted the current study utilizing a published acute pain treatment acupuncture paradigm, thermal noxious stimulation and functional magnetic resonance imaging (fMRI), to: 1) assess the baseline supraspinal blood oxygen level dependent (BOLD) response related to HP stimulation and two (minimal and optimal) intensities of EA with behavioral correlation in pain and deqi (tingling sensation) VAS scores respectively; and 2) assess the direct effect of the different intensities of EA on supraspinal response to subsequent HP stimulation. The authors are aware of different sensations associated with deqi sensation and chose “tingling sensation” as the primary acupuncture intensity assessment based on a previous study which established this particular sensation as the most prominent sensation associated with EA [10]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.