Abstract
Deoxyribonucleotide synthesis by anaerobic class III ribonucleotide reductases requires two proteins, NrdD and NrdG. NrdD contains catalytic and allosteric sites and, in its active form, a stable glycyl radical. This radical is generated by NrdG with its [4Fe-4S](+) cluster and S-adenosylmethionine. We now find that NrdD and NrdG from Lactobacillus lactis anaerobically form a tight alpha(2)beta(2) complex, suggesting that radical generation by NrdG and radical transfer to the specific glycine residue of NrdD occurs within the complex. Activated NrdD was separated from NrdG by anaerobic affinity chromatography on dATP-Sepharose without loss of its glycyl radical. NrdD alone then catalyzed the reduction of CTP with formate as the electron donor and ATP as the allosteric effector. The reaction required Mg(2+) and was stimulated by K(+) but not by dithiothreitol. Thus NrdD is the actual reductase, and NrdG is an activase, making class III reductases highly similar to pyruvate formate lyase and its activase and suggesting a common root for the two anaerobic enzymes during early evolution. Our results further support the contention that ribonucleotide reduction during transition from an RNA world to a DNA world started with a class III-like enzyme from which other reductases evolved when oxygen appeared on earth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.