Abstract

Accelerator Mass Spectrometry (AMS), initiated in late 1970s at McMaster university based on the accelerator and detector technique, has long been applied in the studies on archaeology, geology, and cosmology, as a powerful tool for isotope dating. The advantages of AMS in the analysis of rare nuclides by direct counting of the atoms, small sample size and relatively free from the interferences of molecular ions have been well documented. This paper emphasizes that AMS can not only be used for archaeology, geology, environment, biology and so on, but also served as a unique tool for nuclear physics research. In this paper, the determination of the half‐lives of 79Se, the measurements of the cross‐sections of 93Nb(n,2n)92gNb and 238U(n,3n)236U reactions, the detection and determination of ultratrace impurities in neutrino detector materials, and the measurement of the fission product nuclide 126Sn, are to be introduced, as some of examples of AMS applications in nuclear research conducted in AMS lab of China Institute of Atomic Energy. Searching for superheavy nuclides by using AMS is being planned.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.