Abstract

T cell-dependent immune responses play a central role in allograft rejection. Exploring ways to disarm alloreactive T cells represents a potential strategy to promote long-term allograft acceptance and survival. T cell Ig domain and mucin domain 3 (TIM-3) has previously been demonstrated as a central regulator of T helper 1 (Th1) responses and immune tolerance. Hence, TIM-3 may be an important molecule for decreasing immunological rejection during composite tissue allotransplantation (CTA). In this study, BALB/c and C57BL/6 mice were chosen as the experimental animals. The effects of TIM-3 on allograft rejection were explored using TIM-3-modified mature dendritic cells (TIM-3 mDCs). A laser speckle blood flow (LSBF) imager was used to evaluate blood distribution of the BALB/c mice. ELISA, MTT, ELISPOT assays and flow cytometry analysis were carried out for further researches. We found that TIM-3 could obviously prolong the survival time of the transplanted limbs. And TIM-3 could mitigate the immune response and thus enhance immune tolerance after CTA. Also, TIM-3 can induce lymphocyte hyporesponsiveness, including facilitating lymphocyte apoptosis, decreasing lymphocyte proliferation, and influencing the secretion of inflammatory cytokines by CD4+ T cells. Furthermore, TIM-3 overexpression could induce CD4+ T cells to differentiate into regulatory T cells (Tregs), which recalibrate the effector and regulatory arms of the alloimmune response. In summary, we concluded that TIM-3 can mitigate allograft rejection and thus enhance immune tolerance by inducing lymphocyte hyporesponsiveness and increasing the number of Tregs of the alloimmune response. TIM-3 may be a potential therapeutic molecule for allograft rejection in CTA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.