Abstract
BackgroundGlioblastoma multiforme (GBM) is the most common, invasive and deadly primary type of malignant brain tumor. The Phosphatidylinositol-3-Kinase/AKT (PI3K/AKT) pathway is highly active in GBM and has been associated with increased survival and resistance to therapy. The aim of this study is to investigate the effects of AKT inhibition in combination with the current standard of care which consists of irradiation and temozolomide (TMZ) on human malignant glioma cells growing adherent and as multicellular spheroids in vitro.MethodsThe effects of the allosteric inhibitor MK2206 combined with irradiation and TMZ were assessed on glioma cells growing adherent and as multicellular 3D spheroids. The interaction was studied on proliferation, clonogenic cell survival, cell invasion, −migration and on expression of key proteins in the PI3K-AKT pathway by western blot.ResultsA differential effect was found at low- (1 μM) and high dose (10 μM) MK2206. At 1 μM, the inhibitor reduced phosphorylation of Thr308 and Ser473 residues of AKT in both adherent cells and spheroids. Low dose MK2206 delayed spheroid growth and sensitized spheroids to both irradiation and TMZ in a synergistic way (Combination index <0.35). In contrast, neither low nor high dose MK2206 did enhance therapy sensitivity in adherent growing cells. Effective inhibition of invasion and migration was observed only at higher doses of MK2206 (>5 μM).ConclusionsThe data show that a 3D spheroid model show different sensitivity to irradiation when combined with AKT inhibition. Thereby we show that MK2206 has potential synergistic efficacy to the current standard of care for glioma patients.
Highlights
Glioblastoma multiforme (GBM) is the most common, invasive and deadly primary type of malignant brain tumor
MK2206 does not lead to temozolomide/radiation sensitization in glioma monolayer cultures
We investigated the efficacy of MK2206 at attenuating U87 glioma cell proliferation and found it to be effective at 1 μM and higher (Fig. 1a)
Summary
Glioblastoma multiforme (GBM) is the most common, invasive and deadly primary type of malignant brain tumor. The Phosphatidylinositol-3-Kinase/AKT (PI3K/AKT) pathway is highly active in GBM and has been associated with increased survival and resistance to therapy. The aim of this study is to investigate the effects of AKT inhibition in combination with the current standard of care which consists of irradiation and temozolomide (TMZ) on human malignant glioma cells growing adherent and as multicellular spheroids in vitro. In recent years many specific PI3K/AKT/mTOR pathway targeted agents have become available for preclinical studies and clinical evaluation [13]. We investigated the effect of MK2206 alone and its ability to synergize with radiation and TMZ to inhibit glioma growth, invasion and migration using monolayer human glioma cells and multicellular glioma spheroids
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have