Abstract

The Meidob volcanic field (MVF) forms part of the Darfur Volcanic Province and developed from 7 Ma to 5 ka as indicated by K/Ar, thermoluminescence and 14C ages. It is situated in an uplifted high of the Pan-African basement, which consists of greenstones, high-grade gneisses and granites, and which is covered by Cretaceous sandstone. The MVF basaltic lavas, which originated from more than 300 scoria cones, formed a lava plateau of 50×100 km and up to 400 m thickness in the time between 7 and < 0.3 Ma. Young phonolitic mesa flows, together with rare trachyticbenmoreitic lava flows, trachytic pumice fallout deposits, ignimbrites and maars, form the central part of the field. The total amount of volcanic rocks is between 1400 and 1800 km 3, with 98 vol.% being basaltic rocks, which results in an integrated magma output rate of ∼ 0.0002 km 3 a −1. A combination of age data of the lavas with erosional features yields uplift rates for the Darfur Dome of ∼30 m Ma- 1 in the MVF area. Magma was generated by 3–5% melting of predominantly asthenospheric mantle with a HIMU contribution. Fractionation of olivine, pyroxene, An-poor plagioclaseanorthoclase, magnetite and apatite leads to a differentiation from basanite to phonolite. Assimilation of crustal rocks near the top of the phonolitic upper crustal magma chambers - facilitated by volatile enrichment - produced magmas which gave way to benmoreitic and trachytic lavas, as well as to trachytic ignimbrites and pumice fallout deposits. Ultramafic cumulate xenoliths indicate the existence of major magma reservoirs at the crust-mantle boundary during MVF activity. Magma ascent occurred in a tensional regime, which changed its orientation at around 1 Ma. Early during MVF development, west-east and subordinately northeastsouthwest trending lineaments were active whereas volcanic activity younger than 1 Ma took place along northwest-southeast and northeast-southwest trending systems. The Central African Fault Zone, a transcontinental, lithospheric shear zone, played an important role for the rise of magmas in the Darfur Dome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call