Abstract

Solid-state NMR spectroscopy is being developed at a fast pace for the structural investigation of immobilized and non-crystalline biomolecules. These include proteins and peptides associated with phospholipid bilayers. In contrast to solution NMR spectroscopy, where complete or almost complete averaging leads to isotropic values, the anisotropic character of nuclear interactions is apparent in solid-state NMR spectra. In static samples the orientation dependence of chemical shift, dipolar or quadrupolar interactions, therefore, provides angular constraints when the polypeptides have been reconstituted into oriented membranes. Furthermore, solid-state NMR spectroscopy of aligned samples offers distinct advantages in allowing access to dynamic processes such as topological equilibria or rotational diffusion in membrane environments. Alternatively, magic angle sample spinning (MAS) results in highly resolved NMR spectra, provided that the sample is sufficiently homogenous. MAS spinning solid-state NMR spectra allow to measure distances and dihedral angles with high accuracy. The technique has recently been developed to selectively establish through-space and through-bond correlations between nuclei, similar to the approaches well-established in solution-NMR spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.