Abstract

Abstract The upper few meters of the ocean form a critical layer for air–sea interaction, but because of observational challenges this region is undersampled. However, the physical processes controlling momentum transfer, gas exchange, and heat transfer are all concentrated in the uppermost region of the ocean. To study this region, the Air–Sea Interaction Profiler (ASIP) was developed. This is an autonomous microstructure vertical profiling instrument that provides data from a maximum depth of 100 m to the ocean surface and allows measurements to be performed in an undisturbed environment. The core sensor package on ASIP includes shear probes, microstructure and CTD-quality temperature and conductivity sensors, a photosynthetically active radiation (PAR) sensor, and an oxygen optode providing a repeated high-resolution dataset immediately below the air–sea interface. Autonomous profiling is accomplished with thrusters that submerge the positively buoyant instrument. Once the desired depth is reached, ASIP ascends through the water column acquiring data. At the surface, ASIP acquires its position and transmits this over the Iridium satellite network. ASIP is then placed in a low-power mode for a specified period, whereupon it repeats the profile cycle. Two-way communication over the Iridium network allows mission parameters to be changed in real time. ASIP has been used to study several scientific questions, such as the impact of diurnal warming on atmospheric processes, turbulence scaling in the upper ocean, parameterizing air–sea gas exchange, salinity gradients in the ocean surface boundary layer (OSBL), and consequences for remote sensing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.