Abstract

We address an air traffic control operator (ATCo) work-shift scheduling problem. We consider a multiple objective perspective where the number of ATCos is fixed in advance and a set of ATCo labor conditions have to be satisfied. The objectives deal with the ATCo work and rest periods and positions, the structure of the solution, the number of control center changes, or the distribution of the ATCo workloads. We propose a three-phase problem-solving methodology. In the first phase, a heuristic is used to derive infeasible initial solutions on the basis of templates. Then, a multiple independent run of the simulated annealing metaheuristic is conducted aimed at reaching feasible solutions in the second phase. Finally, a multiple independent simulated annealing run is again conducted from the initial feasible solutions to optimize the objective functions. To do this, we transform the multiple to single optimization problem by using the rank-order centroid function. In the search processes in phases 2 and 3, we use regular expressions to check the ATCo labor conditions in the visited solutions. This provides high testing speed. The proposed approach is illustrated using a real example, and the optimal solution which is reached outperforms an existing template-based reference solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.