Abstract

Bioelectrochemical system is a prospective strategy in organic-contaminated groundwater treatment, while few studies clearly distinguish the mechanisms of adsorption or biodegradation in this process, especially when dense biofilm is formed. This study employed a single chamber microbial electrolysis cell (MEC) with two three-dimensional electrodes for removing a typical organic contaminant, 2,4-dichlorophenol (DCP) from groundwater, which inoculated with anaerobic bacteria derived from sewage treatment plant. Compared with the single biodegradation system without electrodes, the three-dimensional electrodes with a high surface enabled an increase of alpha diversity of the microbial community (increased by 52.6% in Shannon index), and provided adaptive ecological niche for more bacteria. The application of weak voltage (0.6 V) furtherly optimized the microbial community structure, and promoted the aggregation of microorganisms with the formation of dense biofilm. Desorption experiment proved that the contaminants were removed from the groundwater mainly via adsorption by the biofilm rather than biodegradation, and compared with the reactor without electricity, the bioelectrochemical system increased the adsorption capacity from 50.0% to 74.5%. The aggregated bacteria on the surface of electrodes were mainly dominated by Delftia tsuruhatensis (85.0%), which could secrete extracellular polymers and has a high adsorption capacity (0.30 mg/g electrode material) for the contaminants. We found that a bioelectrochemical system with a three-dimensional electrode could stimulate the formation of dense biofilm and remove the organic contaminants as well as their possible more toxic degradation intermediates via adsorption. This study provides important guidance for applying bioelectrochemical system in groundwater or wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call