Abstract

The adsorption of two cationic gemini surfactants, [CnH2n+1 N+(CH3)2-CH2CH2]2·2Br−, where n=12 and 14, on limestone, sand, and clay (Na-montmorillonite) from their aqueous solution in double-distilled water and the effect of this adsorption on the removal of 2-naphthol have been studied. Compared to those of conventional cationic surfactants with similar single hydrophilic and hydrophobic groups (CnH2n+1N+(CH3)3·Br−, where n=12 and 14), the molar adsorptions of the gemini and the conventional surfactants on Na-montmorillonite are almost identical and very close to their cation exchange capacities. On sand and limestone, the molar adsorption of the cationic gemini surfactants is much larger than that of their corresponding conventional surfactants. Adsorption studies of the pollutants onto the three kinds of solids treated by either the gemini or the conventional surfactants show that the former are both more efficient and more effective at removing 2-naphthol from the aqueous phase. On all three soil solids, the addition of KBr increases the efficiency of the adsorption of both types of cationics and for most cases increases also the maximum amount adsorbed, but decreases slightly the efficiency of removal of 2-naphthol. On limestone, the anionic gemini adsorbs with one hydrophilic group oriented toward the Ca2+ sites on the surface and its second hydrophilic group oriented toward the aqueous phase. The conventional anionic surfactant forms a double layer. The gemini anionic is more efficient and more effective than the conventional anionic in the removal of 2-naphathol from the aqueous phase. Both anionic conventional and gemini surfactants have no adsorption on sand. The adsorption mechanisms for all the surfactants on the three soil solid surfaces are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.