Abstract

There is increasing support for the potential clinical use of compounds that interact with serotonin 2A (5-HT2A) receptors. It is therefore of interest to discover novel compounds that interact with 5-HT2A receptors. In the present study, we used computational chemistry to identify critical ligand structural features of 5-HT2A receptor binding and function. Query of compound databases using those ligand features revealed the adrenergic receptor antagonist carvedilol as a high priority match. As carvedilol is used clinically for cardiovascular diseases, we conducted experiments to assess whether it has any interactions with 5-HT2A receptors. In vitro experiments demonstrated that carvedilol has high nanomolar affinity for 5-HT2A receptors. In vivo experiments demonstrated that carvedilol increases the ethanol-induced loss of the righting reflex and suppresses operant responding in mice, and that these effects are attenuated by pretreatment with the selective 5-HT2A receptor antagonist M100907. Moreover, carvedilol did not induce the head-twitch response in mice, suggesting a lack of psychedelic effects. However, carvedilol did not activate canonical 5-HT2A receptor signaling pathways and antagonized serotonin-mediated signaling. It also reduced the head-twitch response induced by 2,5-Dimethoxy-4-iodoamphetamine, suggesting potential in vivo antagonism, allosteric modulation, or functional bias. These data suggest that carvedilol has functionally relevant interactions with 5-HT2A receptors, providing a novel mechanism of action for a clinically used compound. However, our findings do not clearly delineate the precise mechanism of action of carvedilol at 5-HT2A receptors, and additional experiments are needed to elucidate the role of 5-HT2A receptors in the behavioral and clinical effects of carvedilol.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call