Abstract
This paper studies a class of simple integrable modules for an affine Lie algebras which are closely related to the finite-dimensional modules studied by V. Chari and A. Pressley, except that the Euler element is assumed to act. They are infinite-dimensional; but are shown to have finite-dimensional weight spaces. It is conjectured that any simple integrable module with a zero weight space belongs to this class and their classification is given. The main interest in studying such modules is that they may occur in the endomorphism rings of highest weight modules whilst those of Chari and Pressley in general do not. Their character theory is also more complicated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.