Abstract

AbstractMice infected with Listeria monocytogenes (LM) generate CD8 effectors specific for f-MIGWII, the amino terminus of the bacterial product lemA presented by the class Ib MHC molecule H2 M3wt. lemA has several distinctive properties: 1) it is readily presented as an exogenous Ag in the absence of bacterial infection; 2) it is processed by a TAP-independent pathway, which is sensitive to chloroquine, pepstatin, and brefeldin; and 3) the immunogenic portion of the molecule is extremely resistant to proteolytic degradation even by proteinase K. To assess the structural basis for these findings, we expressed a truncated variant (t-lemA) containing the amino-terminal hexapeptide and the subsequent 27 amino acids linked to a histidine tail in Escherichia coli, and purified the product by affinity chromatography. Purified t-lemA could be presented to f-MIGWII-specific effectors by macrophages and fibroblasts at 1–10 nM. Unlike f-MIGWII, which binds directly to H2 M3wt, t-lemA required processing by a chloroquine-, pepstatin-, and brefeldin-sensitive pathway. Brefeldin sensitivity often implies endogenous processing in the cytoplasm, but several lines of evidence suggest translocation to the cytoplasm and proteosomal degradation are not critical for t-lemA presentation. Unlike f-MIGWII, t-lemA was profoundly resistant to proteinase K, and, using 35S-labeled t-lemA, we could identify the region from position 1 to ∼30 as the protease-resistant element. Thus, the hydrophobic peptide sequence following f-MIGWII can account for the unusual properties of lemA noted above. Analogous modification could be used to alter the properties of other peptide Ags presented by class I MHC products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call