Abstract

Fentanyl and other synthetic opioids are the leading cause of drug-related deaths in the United States. mAbs that selectively target fentanyl and fentanyl analogues offer a promising strategy for treating both opioid-related overdoses and opioid use disorders. To increase the duration of efficacy of a candidate mAb against fentanyl, we selected three sets of mutations in the Fc region of an IgG1 anti-fentanyl mAb (HY6-F9DF215, HY6-F9DHS, HY6-F9YTE) to increase binding to the neonatal Fc receptor (FcRn). The mAb mutants were compared against unmodified (wild-type [WT], HY6-F9WT) anti-fentanyl mAb for fentanyl binding, thermal stability, and FcRn affinity invitro, and for efficacy against fentanyl and mAb half-life invivo in mice. Biolayer interferometry showed a >10-fold increase in the affinity for recombinant FcRn of the three mutant mAbs compared with HY6-F9WT. During an acute fentanyl challenge in mice, all FcRn-mutated mAbs provided equal protection against fentanyl-induced effects, and all mAbs reduced brain fentanyl levels compared with the saline group. Serum persistence of the mutant mAbs was tested in Tg276 transgenic mice expressing human FcRn. After administration of 40 mg/kg HY6-F9WT, HY6-F9DF215, HY6-F9DHS, and HY6-F9YTE, the mAbs showed half-lives of 6.3, 26.4, 14.7, and 6.9 d, respectively. These data suggest that modification of mAbs against fentanyl to bind to FcRn with higher affinity can increase their half-life relative to WT mAbs while maintaining efficacy against the toxic effects of fentanyl, further supporting their potential role as a therapeutic treatment option for opioid use disorder and overdose.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.