Abstract
In this paper we continue a research project concerning the study of a graph from the perspective of granular computation. To be more specific, we interpret the adjacency matrix of any simple undirected graph G in terms of data information table, which is one of the most studied structures in database theory. Granular computing (abbreviated GrC) is a well-developed research field in applied and theoretical information sciences; nevertheless, in this paper we address our efforts toward a purely mathematical development of the link between GrC and graph theory. From this perspective, the well-studied notion of indiscernibility relation in GrC becomes a symmetry relation with respect to a given vertex subset in graph theory; therefore, the investigation of this symmetry relation turns out to be the main object of study in this paper. In detail, we study a simple undirected graph G by assuming a generic vertex subset W as reference system with respect to which examine the symmetry of all vertex subsets of G. The change of perspective from G without reference system to the pair (G, W) is similar to what occurs in the transition from an affine space to a vector space. We interpret the symmetry blocks in the reference system (G, W) as particular equivalence classes of vertices in G, and we study the geometric properties of all reference systems (G, W), when W runs over all vertex subsets of G. We also introduce three hypergraph models and a vertex set partition lattice associated to G, by taking as general models of reference several classical notions of GrC. For all these constructions, we provide a geometric characterization and we determine their structure for basic graph families. Finally, we apply a wide part of our work to study the important case of the Petersen graph.
Paper version not known (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have