Abstract

The acute and chronic effects of capsaicin on rat spinal dorsal horn neurons and the excitatory transmission in the dorsal horn were investigated by means of intracellular recording techniques in the spinal cord slice preparation. Bath application of capsaicin (1–2 × 10 −5 M) produced in a majority of cells a prolonged depolarization associated with an increase in synaptic activity and intense neuronal discharges. During and immediately following the capsaicin depolarization, repetitive stimulation of a dorsal root failed to elicit the slow depolarization. After neonatal capsaicin treatment the proportion of dorsal horn neurons exhibiting the slow excitatory transmission was markedly reduced, however, the fast excitatory postsynaptic potentials were present in all examined cells. In addition, the proportion and sensitivity of the cells responding with a slow depolarization to substance P increased.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.