Abstract

The association of thrombin with thrombomodulin, a non-enzymatic endothelial cell surface receptor, alters the substrate specificity of thrombin. Complex formation converts thrombin from a procoagulant to an anticoagulant enzyme. Structure-function analysis of this change in specificity is facilitated by the availability of two soluble proteolytic derivatives of thrombomodulin, one consisting of the six repeated growth factor-like domains of thrombomodulin (GF1-6) and the other containing only the fifth and sixth such domains (GF5-6). Both derivatives can bind to thrombin and block fibrinogen clotting activity, though only the larger GF1-6 can stimulate the activation of protein C. To ascertain whether the substrate specificity change from fibrinogen to protein C is accompanied by structural changes in the active site of the enzyme, fluorescent dyes were positioned at different locations within the active site. A 5-dimethylaminonaphthalene-1-sulfonyl (dansyl) dye was covalently attached to the active site serine to form dansyl-thrombin, while either a fluorescein or an anilinonaphthalene-6-sulfonic acid (ANS) dye was attached covalently to the active site histidine of thrombin via a D-Phe-Pro-Arg linkage. The environment of the dansyl dye was altered in a similar fashion when either GF1-6 or GF5-6 bound to thrombin, since a similar reduction in dansyl emission intensity was elicited by these two thrombomodulin derivatives (25 and 32%, respectively). These spectral changes, and all others in this study, were saturable and reached a maximum when the ratio of thrombomodulin derivative to thrombin was close to 1. The environments of the fluorescein and ANS dyes were also altered when GF1-6 bound to thrombin because binding resulted in emission intensity changes of -13% and +18%, respectively. In contrast, no fluorescence changes were observed when the fluorescein and ANS thrombin derivatives were titrated with GF5-6. Thus, the structure of the active site was altered by thrombomodulin both immediately adjacent to the active site serine and also more than 15 A away from it. However, the structural change far from Ser-195 was only elicited by thrombomodulin species that stimulate thrombin-dependent activation of protein C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.