Abstract

Modified hydrochar (NHC@Fe), with multiple functional groups and transition metal oxide-containing surface, was successfully synthesized by one-step hydrothermal method. The differences in its catalytic activity for peroxymonosulfate (PMS) and peroxydisulfate (PDS) activation were studied in detail. Experimental and DFT studies showed that abundant active sites, namely, transition metals and functional groups on NHC@Fe provided multiple effective pathways for the activation of persulfate (PS). The NHC@Fe/PMS and NHC@Fe/PDS systems could degrade about 80% of tetracycline hydrochloride (TC) in 120 min and were found to be better than those modified by iron or nitrogen alone. This emphasized the advantage of N–Fe co-modification in persulfate activation. Although the Fe2+/Fe3+ cycle accelerated the activation, the activation of PMS mainly relied on Fe3+, whereas that of PDS mainly relied on Fe2+. Moreover, Fe–N, pyrrolic N, pyridine N, C–O, and O–CO groups also played a key role in the activation process, but the dominant action sites were not the same. Multiple free radicals, such as SO4•—, •OH, O2•—, and 1O2 were generated in PMS and PDS activation systems. 1O2 induced non-free radical pathway was mainly involved in the degradation of TC in both activation systems, but the generation pathway of 1O2 was more direct and rapid in the PDS system. This study provides detailed DFT models of the active sites activated by PMS and PDS and discusses the activation pathways of PMS and PDS along with the similarities and differences in ROS reaction mechanisms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.