Abstract

The β-glucan extracted from ungerminated barley with water at 40 °C has a much lower specific viscosity than the corresponding material isolated from a wort prepared at 65 °C from a two-day germinated barley malt. Both glucans are similar in that they are polymers of β-D-glucose, with approximately 74% of the linkages in the β-1,4 configuration and 26% in the β-1,3 configuration. However, the two glucans are not hydrolysed to the same extent either by a partially purified bacterial endo-β-1,3-glucanase or by a homogeneous endo-β-1,3-glucanase from malted barley. The malt glucan is readily hydrolysed, causing a rapid decrease in specific viscosity but with no measurable increase in reducing power, whereas barley glucan undergoes only limited hydrolysis under similar conditions. Thus, different β-glucan preparations from barley or malt may be identical in the proportion of β-1,3 to β-1,4-linkages but the overall arrangement of linkages, and hence susceptibility to enzyme attack, differs according to the source and the method of extraction of the glucan. The molecular weights of both β-glucan preparations and the products of their enzyme hydrolysis have been determined by agarose gel permeation chromatography. A simple model which illustrates the underlying structural relationships of the β-glucans from barley and malt is suggested.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.