Abstract

SummaryThe effect of limited hydrolysis was investigated on the physico‐chemical properties of soy protein isolate–maltodextrin (SPI‐Md) conjugate. The hydrolysates at a degree of hydrolysis (DH) of 1.8% showed much higher surface hydrophobicity (H0; 71.39 ± 3.60) than that of the SPI control (42.09 ± 2.17) and SPI‐Md conjugates (53.46 ± 2.74). Intrinsic fluorescence analysis demonstrated the unfolding of protein molecule and exposure of hydrophobic groups of SPI‐Md conjugate hydrolysates. As evidenced by far‐UV circular dichroism (CD) spectroscopy, the limited hydrolysis increased the unordered secondary structures of SPI‐Md conjugates. The denaturation temperature (Td) of SPI‐Md conjugate was significantly increased by subsequent limited hydrolysis from 102.53 ± 0.60 °C to 108.11 ± 0.61 °C at DH 1.8%. In particular, the emulsifying activity index (EAI) was improved notably after limited hydrolysis of DH 1.8% (147.76 ± 4.39 m2 g−1) compared with that of native SPI (88.90 ± 1.44 m2 g−1) and SPI‐Md conjugate (108.97 ± 1.45 m2 g−1).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call