Abstract

The gene 4 proteins of bacteriophage T7 provide both primase and helicase activities at the replication fork. Efficient DNA replication requires that the functions of the gene 4 protein be coordinated with the movement of the T7 DNA polymerase. We show that a carboxyl-terminal domain of the gene 4 protein is required for interaction with T7 DNA polymerase during leading strand DNA synthesis. The carboxyl terminus of the gene 4 protein is highly acidic: of the 17 carboxyl-terminal amino acids 7 are negatively charged. Deletion of the coding region for these 17 residues results in a gene 4 protein that cannot support the growth of T7 phage. The purified mutant gene 4 protein has wild-type levels of both helicase and primase activities; however, DNA synthesis catalyzed by T7 DNA polymerase on a duplex DNA substrate is stimulated by this mutant protein to only about 5% of the level of synthesis obtained with wild-type protein. The mutant gene 4 protein can form hexamers and bind single-stranded DNA, but as determined by native PAGE analysis, the protein cannot form a stable complex with the DNA polymerase. The mutant gene 4 protein can prime DNA synthesis normally, indicating that for lagging strand synthesis a different set of helicase/primase-DNA polymerase interactions are involved. These findings have implications for the mechanisms coupling leading and lagging strand DNA synthesis at the T7 replication fork.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.