Abstract

We here attempt to improve quantification of the ischemic retinal insult, that is, what is imposed on the retinal tissue by ischemia, especially in experimental models of ischemia. The ischemic retinal insult initiates the ischemic retinal injury (or outcome). Accordingly, it is reasonable to assume that the better the quantification of the insult, the better the correlation with, and thereby estimation of, the injury. The insult seldom has been quantified in terms of the relevant physiological factors, especially in connection with the rate of oxygen delivery (DO2). We here propose the accumulated oxygen deficit (AO2D) as an indicator of the ischemic retinal insult. We hypothesized that AO2D is correlated with the rate of oxygen metabolism measured 1 h after reperfusion following an episode of ischemia (MO2_1_Hr). Previously, we showed that MO2_1_Hr is related to the electroretinogram amplitude and the retinal thickness when they are measured seven days after reperfusion. We studied 27 rats, as well as 26 rats from our published data on retinal ischemia in which we had measurements of DO2 and duration of ischemia (T) of various levels and durations. We also measured DO2 in 29 rats treated with sham surgery. Ischemia was induced by either ipsilateral or bilateral common carotid artery occlusion or by ophthalmic artery occlusion, which gave a wide range of DO2. DO2 and MO2_1_Hr were evaluated based on three types of images: 1) red-free images to measure vessel diameters, 2) fluorescence images to estimate blood velocities by the displacement of intravascular fluorescent microspheres over time, and 3) phosphorescence images to quantify vascular oxygen tension from the phosphorescence lifetime of an intravascular oxygen sensitive phosphor. Loss of oxygen delivery (DO2L) was calculated as the difference between DO2 under normal/sham condition and DO2 during ischemia. AO2D, a volume of oxygen, was calculated as the product DO2L and T. Including all data, the linear relationship between AO2D and MO2_1_Hr was significant (R2 = 0.261, P = 0.0003). Limiting data to that in which T or DO2L was maximal also yielded significant relationships, and revealed that DO2L at a long duration of ischemia contributed disproportionately more than T to MO2_1_Hr. We discuss the potential of AO2D for quantifying the ischemic retinal insult, predicting the ischemic retinal injury and evaluating the likelihood of infarction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.