Abstract
The gut-brain axis plays an important role in Parkinson’s disease (PD) by acting as a route for vagal propagation of aggregated α-synuclein in the gut-first endophenotype and as a mediator of gastrointestinal dyshomeostasis via the nigro-vagal pathway in the brain-first endophenotype of the disease. One important mechanism by which the gut-brain axis may promote PD is by regulating gastrointestinal redox homeostasis as overwhelming evidence suggests that oxidative stress plays a key role in the etiopathogenesis and progression of PD and the gastrointestinal tract maintains redox homeostasis of the organism by acting as a critical barrier to environmental and microbiological electrophilic challenges. The present aim was to utilize the bilateral intrastriatal 6-hydroxydopamine (6-OHDA) brain-first PD model to study the effects of isolated central pathology on redox homeostasis of the gastrointestinal tract. Three-month-old male Wistar rats were either not treated (intact controls; CTR) or treated bilaterally intrastriatally with vehicle (CIS) or 6-OHDA (6-OHDA). Motor deficits were assessed with the rotarod performance test, and the duodenum, ileum, and colon were dissected for biochemical analyses 12 weeks after the treatment. Lipid peroxidation, total antioxidant capacity, low-molecular-weight thiols, and protein sulfhydryls, the activity of total and Mn/Fe superoxide dismutases, and total and azide-insensitive catalase/peroxidase were measured. Both univariate and multivariate models analyzing redox biomarkers indicate that significant disturbances in gastrointestinal redox balance are not present. The findings demonstrate that motor impairment observed in the brain-first 6-OHDA model of PD can occur without concurrent redox imbalances in the gastrointestinal system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.