Abstract
Ground-level ozone (O3) is well recognized as a secondary air pollutant with detrimental effects on plant growth and biochemistry. In a field study, Andrographis paniculata (King of Bitter) was exposed to ambient O3 and elevated O3 (AO + 20ppb) at three growth stages [45, 90, and 135days after treatment, (DAT)] using open-top chambers. Elevated O3 stress negatively impacted plant growth, increased cell damage, and induced foliar injuries. However, elevated O3 also boosted antioxidant production such as proline, phenol, and enzymatic antioxidants, as well as certain secondary metabolites such as tannins, phytosterols, saponins, and alkaloids. This may enhance the plant's medicinal properties, including compounds limonene dioxide, phytol, palmitic acid, and androstadiene. While, certain metabolites like Citronellol, Khusenol, and tocopherol displayed an adverse reaction under elevated O3 exposure. The novel detection of acrodiene, squalene, and neophytadiene under O3 stress emphasizes their medicinal significance. Notably, an important bioactive compound andrographolide in A. paniculata showed increased synthesis under elevated O3 at 45 and 90 DAT, suggesting that O3 exposure could enhance the plant's pharmaceutical value.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have