Abstract
Osteoporotic vertebral compression fractures are a global issue affecting the elderly population. To explore a new calcium silicate bone cement, polylactic acid (PLGA)–polyethylene glycol (PEG)–PLGA hydrogel was compounded with tricalcium silicate (C3S)/dicalcium silicate (C2S)/plaster of Paris (POP) to observe the hydration products and test physical and chemical properties. The cell compatibility and osteogenic capability were tested in vitro. The rabbit femoral condylar bone defect model was used to test its safety and effectiveness in vivo. The addition of hydrogel did not result in the formation of a new hydration product and significantly improved the injectability, anti-washout properties, and in vitro degradability of the bone cement. The cholecystokinin octapeptide-8 method showed significant proliferation of osteoblasts in bone cement. The Alizarin red staining and alkaline phosphatase activity test showed that the bone cement had a superior osteogenic property in vitro. The computed tomography scan and gross anatomy at 12 weeks after surgery in the rabbit revealed that PLGA-PEG-PLGA/C3S/C2S/POP was mostly degraded, with the formation of new bone trabeculae and calli at the external orifice of the defect. Thus, PLGA-PEG-PLGA/C3S/C2S/POP composite bone cement has a positive effect on bone repair and provides a new strategy for the clinical application of bone tissue engineering materials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.