Abstract
This research delves into the intriguing realm of bacterial persistence and its profound implications for biofilms, infections, and antibiotic efficacy. The study focuses on Escherichia coli and how the switch from different carbon sources to fatty acids influences the formation of persister-resilient bacterial cells resistant to antibiotics. The findings reveal a striking variation in survival rates, with a significant number of cells surviving ampicillin treatment after transitioning from glucose to oleic acid. The key revelation is the role of reactive oxygen species (ROS) in cell killing, particularly after switching from gluconeogenic carbons. The timing of ROS bursts aligns with the rapid killing phase, highlighting the critical impact of oxidative stress regulation on persistence frequency. This research provides valuable insights into bacterial persistence mechanisms, offering potential avenues for targeted therapeutic interventions to combat bacterial resistance effectively.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.