Abstract
The quest for enhanced electrocatalysts can be boosted by descriptor-based analyses. Because adsorption energies are the most common descriptors, electrocatalyst design is largely based on brute-force routines that comb materials databases until an energetic criterion is verified. In this review, it is shown that an alternative is provided by generalized coordination numbers (denoted by or GCN), an inexpensive geometric descriptor for strained and unstrained transition metals and some alloys. captures trends in adsorption energies on both extended surfaces and nanoparticles and is used to elaborate structure-sensitive electrocatalytic activity plots and selectivity maps. Importantly, outlines the geometric configuration of the active sites, thereby enabling an atom-by-atom design, which is not possible using energetic descriptors. Specific examples for various adsorbates (e.g., *OH, *OOH, *CO, and *H), metals (e.g., Pt and Cu), and electrocatalytic reactions (e.g., O2 reduction, H2 evolution, CO oxidation, and reduction) are presented, and comparisons are made against other descriptors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.