Abstract

Scaling relations combined with kinetic Monte Carlo simulations are used to study catalytic reactions on extended metal surfaces and nanoparticles. The reaction energies are obtained by density functional theory calculations, where the site-specific values are derived using generalized coordination numbers. This approach provides a way to handle the materials gap in heterogeneous catalysis. CO oxidation on platinum is investigated as an archetypical reaction. The kinetic simulations reveal clear differences between extended surfaces and nanoparticles in the size range of 1–5 nm. The presence of different types of sites on nanoparticles results in a turnover frequency that is orders of magnitude larger than on extended surfaces. For nanoparticles, the reaction conditions determine which sites dominate the overall activity. At low pressures and high temperatures, edge and corner sites determine the catalytic activity, whereas facet sites dominate the activity at high pressures and low temperatures. Furtherm...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.