Abstract

<abstract><p>In this work, we study a posteriori error analysis of a general class of fractional initial value problems and fractional boundary value problems. A Petrov-Galerkin spectral method is adopted as the discretization technique in which the generalized Jacobi functions are utilized as basis functions for constructing efficient spectral approximations. The unique solvability of the weak problems is established by verifying the Babuška-Brezzi inf-sup condition. Then, we introduce some residual-type a posteriori error estimators, and deduce their efficiency and reliability in properly weighted Sobolev space. Numerical examples are given to illustrate the performance of the obtained error estimators.</p></abstract>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.