Abstract
ABSTRACT Orthostochastic matrices are the entrywise squares of orthogonal matrices, and naturally arise in various contexts, including notably definite symmetric determinantal representations of real polynomials. However, defining equations for the real variety were previously known only for 3 × 3 matrices. We study the real variety of 4 × 4 orthostochastic matrices, and find a minimal defining set of equations consisting of 6 quintics and 3 octics. The techniques used here involve a wide range of both symbolic and computational methods, in computer algebra and numerical algebraic geometry.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.