Abstract
The Zintl phase CaSi2 commonly occurs in the 6R structure where puckered hexagon layers of Si atoms are stacked in an AA′BB′CC′ fashion. In this study we show that sintering of CaSi2 in a hydrogen atmosphere (30bar) at temperatures between 200 and 700°C transforms 6R-CaSi2 quantitatively into 3R-CaSi2. In the 3R polymorph (space group R-3m (no. 166), a=3.8284(1), c=15.8966(4), Z=3) puckered hexagon layers are stacked in an ABC fashion. The volume per formula unit is about 3% larger compared to 6R-CaSi2. First principles density functional calculations reveal that 6R and 3R-CaSi2 are energetically degenerate at zero Kelvin. With increasing temperature 6R-CaSi2 stabilizes over 3R because of its higher entropy. This suggests that 3R-CaSi2 should revert to 6R at elevated temperatures, which however is not observed up to 800°C. 3R-CaSi2 may be stabilized by small amounts of incorporated hydrogen and/or defects.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.