Abstract

In this article we consider the 3D Primitive Equations (PEs) of the ocean, without viscosity and linearized around a stratified flow. As recalled in the Introduction, the PEs without viscosity ought to be supplemented with boundary conditions of a totally new type which must be nonlocal. In this article a set of boundary conditions is proposed for which we show that the linearized PEs are well-posed. The proposed boundary conditions are based on a suitable spectral decomposition of the unknown functions. Noteworthy is the rich structure of the Primitive Equations without viscosity. Our study is based on a modal decomposition in the vertical direction; in this decomposition, the first mode is essentially a (linearized) Euler flow, then a few modes correspond to a stationary problem partly elliptic and partly hyperbolic; finally all the other modes correspond to a stationary problem fully hyperbolic.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.